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4.1.3 SoLuTioNs oF LINEAR EQUATIONS

Homogeneous Equations A linear nth-order differential equation of the form

d"y " adliby " dy
a,(x) - - + ++« + gy4(x) T + ag(x)y =0 3)

dx" + ¥ dx"~

is said to be homogeneous, whereas

(I”.\' (1” l.\, (1.‘»
Jon T a, l('\‘) | R (11(.\') e s (l()(.\')\' a g(.\‘), (4)
dx dx" dx B ,

a,(x)

g(x) not identically zero, is said to be nonhomogeneous.
The word homogeneous in this context does not refer to coefficients that are
homogeneous functions. See Section 2.3.

‘p o =e oo ot Superposition Principle—Homogeneous Equations

~Let y,, vy ...,y be solutions of the homogeneous linear nth-order
- differential equation (3) on an interval /. Then the linear combination

| y = ayi(x) + cyax) + -0 + cylx), ()
? where the ¢;, i = 1, 2, .. ., k are arbitrary constants, is also a solution on the
- interval.

How oo we deseribe all o+ them?



Criterion for Linearly Independent Functions

Suppose fi(x), fo(x), ..., fu(x) possess at least n — 1 derivatives. If the deter- |

minant
fl f2 fn
hi fa P
f(l;t-lj f(’."_” .:'n—l)

is not zero for at least one point in the interval /, then the set of functions
fi(x), fo(x), ..., f,(x) is linearly independent on the interval.

(21 L LRRIe L RN Linear Dependence

A set of functions fi(x), fo(x), ..., f,(x) is said to be linearly dependent on
an interval / if there exist constants ¢y, ¢,, ..., C,, not all zero, such that

afilx) + of{x) + -+ ¢, fi(x) =0

for every x in the interval.

X, 5%z, |

X, 502,

ore linewtj dependent
Qve l,iwearlj n deyewiewb o

Criterion for Linearly Independent Solutions

Let y, ¥5, ..., ¥, be n solutions of the homogeneous linear nth-order differ-
ential equation (3) on an interval /. Then the set of solutions is linearly
independent on / if and only if

W(y1, ¥2y ---

' Yn) #0

for every x in the interval.

DEFINITION 4.2

Linear Independence

A set of functions fy(x), f>(x), ..., f,(x) is said to be linearly independent
on an interval / if it is not linearly dependent on the interval.

‘e Hox4 2| = §4t2

No way EX42 = C X

where ¢ js veal numbey



IS IR - WCEl Fundamental Set of Solutions

Any linearly independent set y,, y», ..., y, of n solutions of the homogeneous
linear nth-order differential equation (3) on an interval 7 is said to be a
fundamental set of solutions on the interval.

DI IRRIOl L REA  General Solution—Homogeneous Equations

Let y,, y5, ..., y, be a fundamental set of solutions of the homogeneous lin-
ear nth-order differential equation (3) on an interval /. The general solution
of the equation on the interval is defined to be

y = yi(x) + pyax) + -+ + c,yu(x),

where the ¢;, i = 1, 2, ..., n are arbitrary constants.




I L Rgle] "R BB General Solution—~Nonhomogeneous Equations E@M 2

Let y, be a given solution of the nonhomogeneous linear nth-order l
differential equation (4) on an interval /, and let LL

Ye = ('|_V|(.\’) + (‘Z,VS(X) L ; ('nyn(x) 4 ’3
denote the general solution of the associated homogeneous equation (3) on [r 2
the interval. The general solution of the nonhomogeneous equation on the *

interval is defined to be \/ “_ c.‘.

y = an(x) + cyax) + 0+ ¢uyu(x) + yp(x) = ye(x) + y,(x).

Complementary Function In Definition 4.5 the linear combination
y('(x) = Cl.vl('r) w C:_,\':(.\') T C,,_V,,(X).

which is the general solution of (3), is called the complementary function for
equation (4). In other words, the general solution of a nonhomogeneous linear

differential equation is ‘5 lo P
¢ e €0 .
y = complementary function + any particular solution. luﬁoy\ ’[‘DY (/8 MV\AOMO” 1
\ J L— J 30 — —
L onY one should wak
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(p o defrmine when on ot of solutions s lineary indep / dep.

@ o fid qerersl solution for hmoyrecis op- - (Ye)

@ 40 findk Yarﬁwlav golution oY non- homoge.neous 9'1- v p)



0\) Defermine whethey the ﬁ'iven -funcﬁou ore l?vtearb mdep / de
( P-
on (.—oo) QO)

Coex  AR=X
(20 det (2]~ aol-be (% 4

- n o~

’ - = 2% - . X = - =
w (9% \‘ zx\ X 2%K- %= X
o o c b

(40 W L LI G A atat it

> )(,x‘ are L'in-eMJ ?ﬂd-ew :



b) Determine wWhetheor the ﬁ“wev\ function  ore l?wearb imdep /dep.
on (—o09, o)

fw=¢ fd = 7
X
-y X . X _
W(é‘/e):‘e’ Zx‘: Qf(;-e - e ©
- -~ X"X
\6" e’ . e
- _e’-¢e
- =t-1
. 20 Aov ol e (0=°9)

efad €7 are (,‘Meavb indeyordernt.



c) Pefermine. whethey the c‘-)“wen function  are l?wearb mndep / dep.
on (_-001 QO)

£109= (o5 2 LR F00) =85inX

oo 2K (05 K = ST

f 5 f ore lrearly deperled

U u

< ~ L
covlX X S* X



.-2 -
f09= o0 FE0 =K TR X
L X XX |
W (X, X.Qr iz b I -2 )(-3 -27631,"7(4’).(-3

T ad
-—

] : 4 -
0 6)(4 éxqbiix 3yt

i

- X'-}L{-z) (D) + 16X% 20X — X bloss) =6 X

2(wX

-2
X
| 2%

D bX" ([,w-s)i"

3 (L)X

= au an QS} +t &Zl 0‘51 OIB + 0\‘1 az} &“
E - Qg O Oy — 0250{310{”_ alZQZ\QBB

X—l[u)(

- (et 4k -6l 5 6420 ) K05 48 20



y" ,—1\4 + 103 e’

_(..é'@ (06, +od) gcnemi selution 6f pon-homegy

3: C, e +clc
}j 3 4€” ? -
*_ 728" Xo€e” = 9‘6 oA U2°C
W Zse';)( a‘fOMdf"MﬁA
) {6 v 5x sotwﬁm 6t homogoneow,
-356 >Yiwo€ =0, Squattioy
2 5K
oXAEN  2ESA
© © = 5€ -2C
S
e se | =3e” 20, U
3\: @x 9“;66)( 7 9[; “Ge LS (78
Y X W X PM‘W Sbl_()f‘a’)
66 —7-66 + (O b€ ::(60-1(-21-‘:)@ 32.‘('6 o'['ﬂ'e novlh"WOa@W

eq wktion .



Hw 4.\

3 @55.573%.@ 03









g(x) Form of y,

1. 1 (any constant) A

2. 5x + 7 Ax + B

3.3x* -2 AX’ + Bx + C

4. > - x+1 AX + BxX*+Cx+ D

5. sin 4x A cos 4x + B sin 4x

6. cos 4x A cos 4x + B sin 4x

7. &* Ae*

8. (9x — 2)e* (Ax + B)e*

9. x’e* (Ax* + Bx + C)e*
10. ¢*sin 4x Ae*cos 4x + Be'sin 4x
11. 5x’sin 4x (Ax* + Bx + C)cos 4x + (Dx* + Ex + F)sin 4x
12. xe**cos 4x (Ax + B)e*cos 4x + (Cx + D)e*sin 4x
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